8,705 research outputs found

    Enterprise Rights and the Legal Regime for Exploitation of Outer Space Resources

    Get PDF

    Problems in Occupational Disease Compensation

    Get PDF

    Reflections on Citizenship: Thinking About Power as Interaction

    Get PDF
    The steady decline of participation in many areas of public life suggests that we may be overlooking power as not only a source of the problem, but also as a critical part of the solution. Leslie Hill argues that to revive concepts of citizenship and democratic participation enshrined in the language of the nation\u27s founding, we ought to rethink conventional ideas about power as control and domination and, in the alternative, view power as interaction. She also suggests that we need to adopt new approaches to civic education that include this concept of power as interactive politics. Underlying this argument, she asserts, is a fundamental tenet of democratic governance: that all parties in a democracy, not just those with superior wealth, status, or expertise, ought to be involved in initiating, responding to, and determining what the common good is and the most appropriate ways to achieve it

    On Similarities between Inference in Game Theory and Machine Learning

    No full text
    In this paper, we elucidate the equivalence between inference in game theory and machine learning. Our aim in so doing is to establish an equivalent vocabulary between the two domains so as to facilitate developments at the intersection of both fields, and as proof of the usefulness of this approach, we use recent developments in each field to make useful improvements to the other. More specifically, we consider the analogies between smooth best responses in fictitious play and Bayesian inference methods. Initially, we use these insights to develop and demonstrate an improved algorithm for learning in games based on probabilistic moderation. That is, by integrating over the distribution of opponent strategies (a Bayesian approach within machine learning) rather than taking a simple empirical average (the approach used in standard fictitious play) we derive a novel moderated fictitious play algorithm and show that it is more likely than standard fictitious play to converge to a payoff-dominant but risk-dominated Nash equilibrium in a simple coordination game. Furthermore we consider the converse case, and show how insights from game theory can be used to derive two improved mean field variational learning algorithms. We first show that the standard update rule of mean field variational learning is analogous to a Cournot adjustment within game theory. By analogy with fictitious play, we then suggest an improved update rule, and show that this results in fictitious variational play, an improved mean field variational learning algorithm that exhibits better convergence in highly or strongly connected graphical models. Second, we use a recent advance in fictitious play, namely dynamic fictitious play, to derive a derivative action variational learning algorithm, that exhibits superior convergence properties on a canonical machine learning problem (clustering a mixture distribution)

    Basic studies of baroclinic flows

    Get PDF
    A fully nonlinear 3-dimensional numerical model (GEOSIM), previously developed and validated for several cases of geophysical fluid flow, has been used to investigate the dynamical behavior of laboratory experiments of fluid flows similar to those of the Earth's atmosphere. The phenomena investigated are amplitude vacillation, and the response of the fluid system to uneven heating and cooling. The previous year's work included hysteresis in the transition between axisymmetric and wave flow. Investigation is also continuing of the flows in the Geophysical Fluid Flow Cell (GFFC), a low-gravity Spacelab experiment. Much of the effort in the past year has been spent in validation of the model under a wide range of external parameters including nonlinear flow regimes. With the implementation of a 3-dimensional upwind differencing scheme, higher spectral resolution, and a shorter time step, the model has been found capable of predicting the majority of flow regimes observed in one complete series of baroclinic annulus experiments of Pfeffer and co-workers. Detailed analysis of amplitude vacillation has revealed that the phase splitting described in the laboratory experiments occurs in some but not all cases. Through the use of animation of the models output, a vivid 3-dimensional view of the phase splitting was shown to the audience of the Southeastern Geophysical Fluid Dynamics Conference in March of this year. A study on interannual variability was made using GEOSIM with periodic variations in the thermal forcing. Thus far, the model has not predicted a chaotic behavior as observed in the experiments, although there is a sensitivity in the wavenumber selection to the initial conditions. Work on this subject, and on annulus experiments with non-axisymmetric thermal heating, will continue. The comparison of GEOSIM's predictions will result from the Spacelab 3 GFFC experiments continued over the past year, on a 'back-burner' basis. At this point, the study (in the form of a draft of a journal article) is nearly completed. The results from GEOSIM compared very well with the experiments, and the use of the model allows the demonstration of flow mechanics that were not possible with the experimental data. For example, animation of the model output shows that the forking of the spiral bands is a transient phenomenon, due to the differential east-west propagation of convection bands from different latitudes

    The Metallicity and Reddening of Stars in the Inner Galactic Bulge

    Get PDF
    We present a preliminary analysis of K, J-K color magnitude diagrams (CMDs) for 7 different positions on or close to the minor axis of the Milky Way at Galactic latitudes between +0.1^\circ and -2.8^\circ. From the slopes of the (linear) giant branches in these CMDs we derive a dependence of on latitude for b between -0.8^\circ and -2.8^\circ of -0.085 \pm 0.033 dex/degree. When combined with the data from Tiede et al. we find for -0.8^\circ \leq b \leq -10.3^\circ the slope in is -0.064 \pm 0.012 dex/degree. An extrapolation to the Galactic Center predicts [Fe/H] = +0.034 \pm 0.053 dex. We also derive average values for the extinction in the K band (A_K) of between 2.15 and 0.27 for the inner bulge fields corresponding to average values of E(J-K) of between 3.46 and 0.44. There is a well defined linear relation between the average extinction for a field and the star-to-star scatter in the extinction for the stars within each field. This result suggests that the typical apparent angular scale size for an absorbing cloud is small compared with the field size (90\arcsec on a side). Finally, from an examination of the luminosity function of bright giants in each field we conclude that the young component of the stellar population observed near the Galactic center declines in density much more quickly than the overall bulge population and is undetectable beyond 1^\circ from the Galactic center.Comment: accepted for publication in Astron. Jour. Compressed file contains the text, 9 figures, and 6 tables prepared with AAS Latex macros v. 4.
    corecore